Quantum Drinfeld Hecke Algebras

نویسندگان

  • ANNE V. SHEPLER
  • VIKTOR LEVANDOVSKYY
چکیده

We consider finite groups acting on quantum (or skew) polynomial rings. Deformations of the semidirect product of the quantum polynomial ring with the acting group extend symplectic reflection algebras and graded Hecke algebras to the quantum setting over a field of arbitrary characteristic. We give necessary and sufficient conditions for such algebras to satisfy a Poincaré-Birkhoff-Witt property using the theory of noncommutative Gröbner bases. We include applications to the case of abelian groups and the case of groups acting on coordinate rings of quantum planes. In addition, we classify graded automorphisms of the coordinate ring of quantum 3-space. In characteristic zero, Hochschild cohomology gives an elegant description of the Poincaré-Birkhoff-Witt conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild Cohomology and Quantum Drinfeld Hecke Algebras

Abstract. Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computatio...

متن کامل

A categorical approach to classical and quantum Schur–Weyl duality

We use category theory to propose a unified approach to the Schur–Weyl dualities involving the general linear Lie algebras, their polynomial extensions and associated quantum deformations. We define multiplicative sequences of algebras exemplified by the sequence of group algebras of the symmetric groups and use them to introduce associated monoidal categories. Universal properties of these cat...

متن کامل

Quantum Toroidal Algebras and Their Representations

Quantum toroidal algebras (or double affine quantum algebras) are defined from quantum affine Kac-Moody algebras by using the Drinfeld quantum affinization process. They are quantum groups analogs of elliptic Cherednik algebras (elliptic double affine Hecke algebras) to whom they are related via Schur-Weyl duality. In this review paper, we give a glimpse on some aspects of their very rich repre...

متن کامل

Drinfeld Orbifold Algebras

We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We giv...

متن کامل

Continuous Hecke algebras

The theory of PBW properties of quadratic algebras, to which this paper aims to be a modest contribution, originates from the pioneering work of Drinfeld (see [Dr1]). In particular, as we learned after publication of [EG] (to the embarrassment of two of us!), symplectic reflection algebras, as well as PBW theorems for them, were discovered by Drinfeld in the classical paper [Dr2] 15 years befor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012